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TECHNICAL NOTE NO. 780

MEASURED MOMEKNTS OF INERTIA OF 32 AIRPLANES

By William Gracey
SUMMAR

A compilation of the experimentally determined moments
of inertia of 32 airplanes is presented. The meagsurements
were odtained at the laboratories of the NACA by mezns of
a pendulum nmethod. The airplanes tested are representative
of several types of aircraft of gross weight less than
10,000 pounds.

The results are pregsented in coefficient as well as
in dimensional form. -An elementary analysis of the data
disclosed the posgibtility of grouning the results accord-
ing to wing type of the airplane, as low-wing monoplanes,
parasol and high-wing monoplanes, and biplanes.. The data
are shown to provide a convenient means of rapidly esti=-
mating the nmoments of inertia of other airplanes. A three-
view drawing of each of the 32 airplanes is included.

This note supersedes NACA Technical ¥ote No. 375.
I¥TRODUCTION

‘The determination of the moments of inertia of air-
Planes by means of a pendulum method has been described in
detail in reference 1. The precision of the results od-
tained by this methed is within *2.5 percent, *1.3 per-
cent, and *#0.8 percent, for the X, the Y, and the 2
axes, respectively; whereas, the precision of estimates
computed on ‘the basis of a weight schedule has been shown
to be about 10 percent (reference 2, The penduium meth-
nd has been in use at the laboratories of the NACA for the
vast 12 years, during wvhich time measurements have bzen
obtained on several tynes of airplane of gross weight less
than 10,000 pounds., Recause these measurements represent
the most accurate data availadle, it appeared desiradble to
compile and publish all the data accumulated up to the
present time,
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The results of the .tesgts of ‘a.few of the airplanes
have already been published in an appendix of reference 1
but are included herein for completeness. These same data
had also been published earlier in reference 3 but were
slightlv in error because the methods of correcting for
the additional-mass effe¢t had not been developed at taat
time. As the corrected values of reference 1 are present-
ed herein, the information contained in the present paper
should be considered as superseding that of refercnce 3.
Since tae pudlication of reference & the practice of deter-
mining the angle between the principal and the reference
axes has been abandoned, ‘this angle having boen found to
be less than 3° for conventional airplancs.

METHOD AND APPARATUS

The measurements revorted herein were obtained by the
method described in reference 1. Accordirg %o this pro-
‘cedure, the moments of inertia are determined about three
reference axes, the origin of vhich is the center of grav-
ity of the airplane. These axes arec: tahe X axis, par-
allel to the thrust line in +the plane of symmetry; the Y
axis, perpendicular to the plane of symmetry; and the Z
axis, perpendicular toc the thrust line in the plane of
synmnetry.

The moments of inertia about the X and Y axes are
found by swinging the airvlane as a connound pendulun,
whereas the moment of inertia about the Z axis is deter-
nined by oscillating thae airpiane as a difilar-torsional
peniulun. In each case the true noments of inertia are de-
errined bv correcting the measured monments of inertia for
(1) the buoyancy of the structure, (2) the air entrapned
within the structure, and ~ (%) the additional-mass effect.
The apvarent addi*ional moment of inertia about each axis
is evaluated on a bdasis of (1) the size and the shape of
the airplane normal to the direction of motion and (2) tkre
results of tests of the additional-mass effect of flat
plates (reference 1). o

<t

The airplanes tested are listed in tabdle  I. Most of
the airplanes are representative of several types of mili-
tary aircraft, both Armyr and Wavy. A4 few commercinl and
experinmental types are also included. TWith the exception
of the twin-engine 0A-44, all of the airplanes tested were
of the single-engine tyve and, excent for thae Eammond Y-1,
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the airplanes wers all of the tractor type. .All of the air-
planes except the amphidian OA~4A were landplares.

In general, the airplanes were tested for the normal
full-load condition. n all cases the gas and the o0il
tanks were filled. As a rule. the pilot and each passen-
ger of the airplane was represented by 175 to 200 pounds
of ballast. In some cases, however, only the pilot was so
represented znd, in other cases, no ballast at all was
added.. For this reacon bvoth the weight of the airplane as
tested and the weight of the airplane minus the dallast
for the pilot and the nassengers will ve noted.

The airplanes with fixed landing gecar were usually
tested with the landing gear in flying position, that is,
with the oleo extended. For an airplane with a retracta-
ble landing gear, tests were conducted with the landing
gear either retracted or extended (with the oleo extended).
In some few instances, the wheels were fixed in the taxy-
ing condition, that is, with the oleo compressed,

RESULTS

The results of the tests on the various alirpianes are
summarized in table I. The data presented include the
true moments cf inertia of the airplane and the additional
moments of inertia abvout the refercnce axes: The true mo-
ments of inertia are based on tac weight of the alrplane
as tested,

The data are also presented as radil of gyration and
in-coefficient form. The radii of gyration are computed

from the true moments of inertia from the expressions:

o = A
=¥ = W/%'

1
iq
‘ .

<3

[aN ]

i

=31
|2

jJQI

where

k., X,, k radii of gyration zbout X, Y, and 2
X Y Z
axes, respectively
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A,  B, C ‘the true'ﬁoments of.inertiavabout the

. , X, Y, and 2 axes, respectively
W weight of ‘the airplane as tested

Nondimensional coefrficients, useful for comparing the mo=-
nments of inertia of airplanes whose size and weight vary
congsiderably, are expressed in terms of the wing span,

b, and are calculated from theé expressions: o

. . kX

C X = ‘_6“
y

C Yy = :6""
It

C A = -;t')ﬂ'

where Cy, Cys and OCy are the coefficlents for the mo-

ments of inertia about the X, the Y, and the 2 axes,
respectively. .For convanience all the coefficients are
expressed in terms of ths wing span even thougsh the over-
all length of the airplane may be the more rational param=-
eter for Oy. :

In order to facilitate the comparison of data from
similar airplanes, the results in tabdle I are-arrangecd in
three groups according to wing type, namely, low-wing
monoplanes, parasol arnd a1ish-wing monoplaneg, and biplanes.
This grouping permits a graphical presentation of certain
vortions of the data. Thus, for any one of .the groups,
the radii of gyration about the X ard the 2 axes may
be plotted as functions of the wing span, and the radii of
gyration about the ¥ axis may be plotted against the
over-all length of the airplane. Charts of this type are
given for the low-wing monoplane and the bivlane groups
(figs. 1 to 4, inclusive). No charts are chown for the
hizh-wing monoplane groun because the available data were
insurficient to define the curves. It should be noted

‘ that the curves shown in Jigures 1 to 4 were derived from

‘ : data of similar azirplanes. aamely, military airplanes of

‘ comparatively recent design. The data for commercial and

| experimental airplanes obviously do nct apply to these
curves. The biplane data given in reference 1 sre onitted
from figures 3 and 4 becnuse the airplanes were generally
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of older degsign and vecause the mors recent airplanes were
tested with improved apbarﬂtu .

In order to give some indication of the mass distri-
bution adout the various axes, a three-view diagranm of
each airplane tested is included. (See figs. 5 to 36.)

DISCUSSION

The information presented provides a convenient meth-
od of rapidly avpproxirating the moments of inertia of air-
planes similar to those for which measuremernts are Ziven.
The method involves simply the selection from table I of
an airplane which is sufficiently like the airplane con-
sidered that the radii of gyration or coefficients of the
airplane in table I can be used to compute the moments of
inertia of the airplane under consideration. The conven-
ience ¢f the method is obvious, because the only numerical
data required for its application arc the weight and the
over-all dimensions of the sirplane considered. The method
can be applied when the airplanes are similar as regards
general type, shape, nand structural characteristics dut are
different ir size and weight. That the results from one
airplane can be applicd to a sinilar airplane of different
size may Dbo seen from the fact that the data of similar
airplanes vary uniformly with the over—-all dimensions
(figs. 1 to 4). 1In reference to these figures it is in-
teresting to note that, for oth low-wing monoplanes and
biplane groups, the curves of ky and ky are rarallel

and that the curve of k for biplanes is parallel to
and above the kY curve for the low—-wing noncvlanes.

It should be appnrecinted thnt the indiscriminate ap-
plication of the rethod given nay lead to very erroneous
results, In order to enphasize this point, the data of
the P-25 and the NF-1, two very sinilar airplanes, will
be congidered. In spite of the close sinmilarity as re-
gards size, shanc, and structural design, the morments of
inertia of the N¥-1l airplane are considerably higher than
those of the P-35, particularly about the X and the 2
axes. These diffecrences are rcadily accounted for by the
fact that the N¥-1 was tested with a 100-nound bomb under
‘each wing. Deducting the norents of inertia of the bonbs
reduces the values of A, 3, and C to 2653, 4620, and 5795
slug-feet® for the case with the landing gdar extended.
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The values for the two airnlanes are thus shown to be in
better agreemert than the data in tabdle I indicate. The
radii of gyration of the NF-1 plotted in figures 1 and 2
"were calculated from these corrected values. None of the.
other airplanes carried bombs or other concentrated loads
not included in the normal load condition of the airplane.

The precision of the moments of inertia approximated
by the method just described is difficult to estimate pve-
cause it depends on the degree of similarity between the
two airplanes considered and on the exacitness with which
any dissimilarities can be accounted for. If the method
"is used with due regard to its limitations, it is believed
that the precision obdtained will in many cases avproach
that obtained by computation methods.

Langley Menorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Fijeld, Va., September 13, 1940.
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Figs. 21,22
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Figs. 23,24
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Figs. 25,26
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Figs, 29,30
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Figs. 31,32

1567 pounds.

| airplane.

The XN2y-
Test weight

Figure 32:"

The NY-| airplane,
Test weight, 2622 pounds.

Figure 31,-



Figs. 33,34
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Figs. 35,26
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